technologies

The DLX713X, 5x7 Dot Matrix Intelligent Display ${ }^{\circledR}$ Device Appnote 25

This application note is intended to serve as a design and application guide for users of the DLO7135 and DLG7137 OSRAM Intelligent Displays. This appnote covers device electrical description, operation, general circuit design considerations and interfacing to microprocessors.

Electrical Description

The DLX713X intelligent alphanumeric 5×7 dot matrix display contains memory, character generator, multiplexing circuits, and drivers built into a single package.
Figure 1 is a block diagram of the DLX713X. The unit consists of 35 LED die arranged in a 5×7 pattern and a single CMOS integrated circuit chip. The IC chip contains the column drivers, row drivers, 128 character generator ROM, memory, multiplex and blanking circuitry.

Figure 1. DLX713X block diagram

Package

Thirty-five dots form a 0.48×0.68 inch overall character size in a 0.700×0.800 inch dual-in-line package. The ± 50 degree wide viewing angle complements the large display and is the ideal display for industrial control applications. Display construction is filled reflector type with the intregrated circuit in the back also filled with IC-grade epoxy. This results in a very rugged part which is resistant to moisture, shock, and vibration.

Figure 2. Physical dimensions in inches (mm)

Table 1. Electrical inputs

Pin	Name	Pin	Name
1	V $_{\text {CC }}$	14	D6 data input (MSD)
2	$\overline{\mathrm{LT}}$ lamp test	13	D5 data input
3	$\overline{\mathrm{CE}}$ chip enable	12	D4 data input
4	$\overline{\mathrm{WR}}$ write	11	D3 data input
5	$\overline{\mathrm{BL} 1}$ brightness	10	D2 data input
6	$\overline{\mathrm{BL0}}$ brightness	9	D1 data input
7	GND	8	D0 data input (LSD)

Table 2. Pin description

V_{CC}	Positive Supply +5 V
GND	Ground
D0-D6	Data Lines, see Figure 3 (Character set)
$\overline{\mathrm{CE}}$	Chip Enable (active low) Determines which device in an array will accept data
$\overline{\mathrm{WR}}$	Write (active low) Data and chip enable must be present and stable before and after the write pulse (see DLX713X data sheet for timing)
$\overline{\mathrm{BLO}, \overline{\mathrm{BL1}}}$	Blanking Control Input (active low) Used to control level of display brightness
$\overline{\mathrm{TT}}$	Lamp Test (active low) Causes all dots to light at $1 / 2$ brightness

Operation

In a dot matrix display system, it is advantageous to use a multiplexed approach with 12 drivers (5 digit plus 7 segments) rather than 35 segment drivers, reducing the number of drives and interconnections required. A multiplexed system must be a synchronous system or the digits or elements may have different on (lit) times and therefore varying brightness.
The DLX713X is an internally multiplexed display but the data entry is asynchronous. Loading data is similar to writing into a RAM. Present the data, select the chip, and give a write signal. For a multidigit system, each digit has its own unique location and will display its contents until replaced by another code.

The waveforms of Figure 4 demonstrates the relationship of the signals required to generate a write cycle. Check the data sheet for minimum values required for each signal.

Figure 3. Character set

1. High=1 level. 2. Low=0 level.

Figure 4. Timing characteristics

Display Blanking and Dimming

The DLX713x Intelligent Display has the capability of three levels of brightness plus blank. Figure 5 shows the combination of $\overline{B L O}$ and $\overline{B L 1}$ for the different levels of brightness. The $\overline{\mathrm{BLO}}$ and $\overline{\mathrm{BL} 1}$ inputs are independent of write and chip enable and does not affect the contents of the internal memory. A flashing display can be achieved by pulsing the blanking pins at a 1-2 hertz rate. Either $\overline{\mathrm{BLO}}$ or $\overline{\mathrm{BL1}}$ should be held high to light up the display.

Table 3. Dimming and blanking control

Brightness Level	$\overline{\text { BL1 }}$	$\overline{\mathbf{B L 0}}$
Blank	0	0
$1 / 7$ brightness	0	1
$1 / 2$ brightness	1	0
full brightness	1	1

Lamp Test

The lamp test when activated causes all dots on the display to be illuminated at $1 / 7$ brightness. It does not destroy any previously stored characters. The lamp test function is independent of chip enable, write, and the settings of the blanking inputs.
This convenient test gives a visual indication that all dots are functioning properly. Because lamp test does not affect the display memory, it can be used as a cursor or pointer in a line of displays.

General Design Considerations

When using the DLX713X on a separate display board having more than six inches of cable length, it may be necessary to buffer all of the input lines. A non-inverting 74LS244 buffer can be used. The object is to prevent transient current into the DLX713x protection diodes. The buffers should be located on the display board and as close to the displays as possible.
Because of high switching currents caused by the multiplexing, local power supply bypass capacitors are also needed in many cases. These should be 10 volt, tantalum type having 10 uf capacitance. The capacitors may only be required every 2 displays depending on the line regulation and other noise generators.

Decoupling capacitors should also be used across V_{CC} and ground of each display. Typical value of these capacitors is $0.01 \mathrm{mF} / 10 \mathrm{~V}$.
If small wire cables are used it is good engineering practice to calculate the wire resistance of the ground and the +5 volt wires. More than 0.2 volt drop (at 100 ma per digit) should be avoided, since this loss is in addition to any inaccuracies or load regulation of the power supply.
The 5 volt power supply for the DLX713X should be the same one supplying the V_{CC} to all logic devices. If a separate supply must be used then local buffers should be used on all the inputs and these buffers should be powered from the display power supply. This precaution is to avoid line transients or any logic signals to be higher than V_{CC} during power up.

Interfacing

For an eight digit display using the DLX713X, interfacing to a single chip microprocessor is easy and straight forward.

Figure 5. Block diagram of the Intel 8031 controller

Conclusion

Note that although other manufacturers' products are used in the examples, this application note does not imply specific endorsement, or warranty of other manufacturers' products by OSRAM. The interface schemes shown demonstrate the simplicity of using the DLX713X dot matrix Intelligent Display. Slight timing differences may be encountered for various microprocessors, but can be resolved similar to those encountered when using different RAM's. The techniques used in the examples were shown for their generality. The user will undoubtedly invent other schemes to optimize his particular system to its requirements.

Program Listing				
1			; BY DAN WATSON	
2			; TO DO LAMP TEST,SET 100\% BRIGHTNESS	
3			; AND WRITE 'SIEMENS*'	
4				
5			; P3.0 = BLO	
6			; P3.1 = BL1	
7			; P3.2 = LT\	
8			; P3.6 = WR	
9				
10			; RO = DIGIT ADDRESS (CHIP ENABLES - CE\)	
11			; R1 = DIGIT COUNTER	
12			; $\mathrm{R} 7=\mathrm{R} 6=\mathrm{R} 5=$ WAIT REGISTERS	
13				
14	0000		.ORG 00H	
15	0000	020003	INIT:JMP BEGIN	
16	0003	120024	BEGIN:CALL WAIT1	; DELAY FOR uC TO STABILIZE
17	0006	75 B0 00	MOV P3,\#00H	; LAMP TEST
18	0009	120024	CALL WAIT1	; DISPLAY LT\ FOR A WHILE
19	000C	75 B0 07	MOV P3,\#07H	; SET ALL 8 DISPLAYS TO 100\% BRT
20	000F	00	NOP	
21	0010	00	NOP	
22	0011	7800	MOV R0,\#00H	; DIGIT 7 ADDRESS
23	0013	7908	MOV R1,\#08H	; 8 DIGIT COUNTER
24	0015	7400	MOV A,\#00H	; CLEAR ACC.
25	0017	900037	MOV DPTR,\#TEXT	; ADDRESS OF THE MESSAGE
26	001A	93	WRT:MOVC A,@A+DPTR	; LOAD FIRST CHAR. INTO THE ACC.
27	001B	F2	MOVX @R0,A	; DIGIT ADDRESS AND DATA WRITE
28	001C	A3	INC DPTR	; NEXT CHARACTER ADDRESS
29	001D	08	INC RO	; NEXT DIGIT (6) ADDRESS
30	001E	E4	CLR A	
31	001F	D9 F9	DJNZ R1,WRT	; WRITE ALL 8 CHAR.
32	0021	00	GO:NOP	
33	0022	0121	JMP GO	; MESSAGE ALWAYS ON
34	0024			
35	0024			
36	0024	7F 88	WAIT1:MOV R7,\#88H	; DELAY LOOPS
37	0026	00	NOP	
38	0027	7E FF	WAIT2:MOV R6,\#FFH	
39	0029	00	NOP	
40	002A	7D FF	WAIT3:MOV R5,\#FFH	
41	002C	00	NOP	
42	002D	DD FE	DJNZ R5,\$	
43	002F	00	NOP	
44	0030	DE F8	DJNZ R6,WAIT3	
45	0032	00	NOP	
46	0033	DF F2	DJNZ R7,WAIT2	
47	0035	00	NOP	
48	0036	22	RET	
49				
50	0037	5349454 D 45	TEXT:DB 'SIEMENS*'	
	003C	4 E 532 A		
51	003F			
52	003F		.END	

